1. 복소수의 행렬 표현

복소수는 실수부와 허수부로 구성된 형태로, 일반적으로 다음과 같이 표현된다.

z = a + bi

여기서 a는 실수부, b는 허수부이며, i는 허수 단위로 i^2 = -1이다.

복소수 행렬은 이러한 복소수들을 원소로 가지는 행렬로 정의된다. 예를 들어, 복소수 행렬 \mathbf{A}는 다음과 같이 표현할 수 있다:

\mathbf{A} = \begin{bmatrix} a_{11} + b_{11}i & a_{12} + b_{12}i \\ a_{21} + b_{21}i & a_{22} + b_{22}i \end{bmatrix}

여기서 각 원소는 복소수로 이루어져 있으며, 이 복소수는 각각 실수부 a_{ij}와 허수부 b_{ij}로 구성된다.

2. 복소수 행렬의 덧셈

복소수 행렬의 덧셈은 실수 행렬의 덧셈과 유사하게 원소별로 이루어진다. 두 복소수 행렬 \mathbf{A}\mathbf{B}가 다음과 같이 주어졌을 때:

\mathbf{A} = \begin{bmatrix} a_{11} + b_{11}i & a_{12} + b_{12}i \\ a_{21} + b_{21}i & a_{22} + b_{22}i \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} c_{11} + d_{11}i & c_{12} + d_{12}i \\ c_{21} + d_{21}i & c_{22} + d_{22}i \end{bmatrix}

두 행렬의 덧셈은 다음과 같이 원소별로 이루어진다:

\mathbf{A} + \mathbf{B} = \begin{bmatrix} (a_{11} + c_{11}) + (b_{11} + d_{11})i & (a_{12} + c_{12}) + (b_{12} + d_{12})i \\ (a_{21} + c_{21}) + (b_{21} + d_{21})i & (a_{22} + c_{22}) + (b_{22} + d_{22})i \end{bmatrix}

즉, 실수부와 허수부를 각각 더하는 방식으로 진행된다.

3. 복소수 행렬의 스칼라 곱

복소수 행렬에 실수 스칼라를 곱할 때는 각 원소에 스칼라를 곱하면 된다. 예를 들어, 스칼라 \lambda를 복소수 행렬 \mathbf{A}에 곱하면 다음과 같다:

\lambda \mathbf{A} = \lambda \begin{bmatrix} a_{11} + b_{11}i & a_{12} + b_{12}i \\ a_{21} + b_{21}i & a_{22} + b_{22}i \end{bmatrix} = \begin{bmatrix} \lambda a_{11} + \lambda b_{11}i & \lambda a_{12} + \lambda b_{12}i \\ \lambda a_{21} + \lambda b_{21}i & \lambda a_{22} + \lambda b_{22}i \end{bmatrix}

각 원소에 대해 실수 스칼라를 곱하여 계산한다.

4. 복소수 행렬의 곱셈

복소수 행렬 간의 곱셈은 실수 행렬의 곱셈과 마찬가지로 이루어지지만, 각 원소가 복소수라는 점에서 복소수의 곱셈 규칙이 적용된다. 두 복소수 행렬 \mathbf{A}\mathbf{B}의 곱은 다음과 같다.

\mathbf{A} = \begin{bmatrix} a_{11} + b_{11}i & a_{12} + b_{12}i \\ a_{21} + b_{21}i & a_{22} + b_{22}i \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} c_{11} + d_{11}i & c_{12} + d_{12}i \\ c_{21} + d_{21}i & c_{22} + d_{22}i \end{bmatrix}

\mathbf{A}\mathbf{B}의 곱은 다음과 같이 원소 간의 복소수 곱셈을 통해 계산된다:

\mathbf{A} \mathbf{B} = \begin{bmatrix} (a_{11} + b_{11}i)(c_{11} + d_{11}i) + (a_{12} + b_{12}i)(c_{21} + d_{21}i) & (a_{11} + b_{11}i)(c_{12} + d_{12}i) + (a_{12} + b_{12}i)(c_{22} + d_{22}i) \\ (a_{21} + b_{21}i)(c_{11} + d_{11}i) + (a_{22} + b_{22}i)(c_{21} + d_{21}i) & (a_{21} + b_{21}i)(c_{12} + d_{12}i) + (a_{22} + b_{22}i)(c_{22} + d_{22}i) \end{bmatrix}

각 항은 복소수 곱셈 규칙에 따라 계산된다. 복소수의 곱셈은 다음과 같이 이루어진다:

(a + bi)(c + di) = (ac - bd) + (ad + bc)i

따라서 위의 각 항에 이 규칙을 적용하면 최종 결과가 나온다.

5. 켤레복소수 행렬

복소수 행렬의 켤레는 각 원소에 대한 켤레복소수를 취한 행렬을 의미한다. 복소수 z = a + bi의 켤레복소수는 \overline{z} = a - bi로 정의된다. 마찬가지로, 행렬 \mathbf{A}의 켤레복소수 행렬 \overline{\mathbf{A}}는 다음과 같이 정의된다:

\overline{\mathbf{A}} = \begin{bmatrix} \overline{a_{11} + b_{11}i} & \overline{a_{12} + b_{12}i} \\ \overline{a_{21} + b_{21}i} & \overline{a_{22} + b_{22}i} \end{bmatrix} = \begin{bmatrix} a_{11} - b_{11}i & a_{12} - b_{12}i \\ a_{21} - b_{21}i & a_{22} - b_{22}i \end{bmatrix}

이와 같이, 복소수 행렬의 각 원소에 대해 켤레를 취하면 된다.

6. 전치 복소수 행렬

전치 행렬은 주 대각선을 기준으로 행과 열을 바꾼 행렬이다. 복소수 행렬의 전치 행렬은 실수 행렬의 전치와 동일한 방식으로 이루어진다. 복소수 행렬 \mathbf{A}가 다음과 같이 주어진 경우:

\mathbf{A} = \begin{bmatrix} a_{11} + b_{11}i & a_{12} + b_{12}i \\ a_{21} + b_{21}i & a_{22} + b_{22}i \end{bmatrix}

복소수 행렬의 전치 행렬 \mathbf{A}^T는 다음과 같이 정의된다:

\mathbf{A}^T = \begin{bmatrix} a_{11} + b_{11}i & a_{21} + b_{21}i \\ a_{12} + b_{12}i & a_{22} + b_{22}i \end{bmatrix}

즉, 각 원소의 위치가 전치되어 나타난다.

7. 켤레전치 복소수 행렬

복소수 행렬의 켤레전치(conjugate transpose) 또는 허미티안(Hermitian) 행렬은 행렬을 전치한 뒤, 각 원소의 켤레복소수를 취한 행렬을 말한다. 복소수 행렬 \mathbf{A}의 켤레전치 \mathbf{A}^H는 다음과 같이 정의된다:

\mathbf{A}^H = \overline{\mathbf{A}^T}

즉, 먼저 행렬을 전치한 후 각 원소의 켤레를 취한다. 예를 들어, \mathbf{A}가 다음과 같다면:

\mathbf{A} = \begin{bmatrix} a_{11} + b_{11}i & a_{12} + b_{12}i \\ a_{21} + b_{21}i & a_{22} + b_{22}i \end{bmatrix}

\mathbf{A}^H는 다음과 같다:

\mathbf{A}^H = \begin{bmatrix} a_{11} - b_{11}i & a_{21} - b_{21}i \\ a_{12} - b_{12}i & a_{22} - b_{22}i \end{bmatrix}

8. 복소수 행렬의 행렬식

복소수 행렬의 행렬식(determinant)은 실수 행렬의 행렬식 계산과 유사하지만, 복소수 곱셈 규칙이 적용된다. 2x2 복소수 행렬 \mathbf{A}의 행렬식은 다음과 같이 계산된다:

\mathbf{A} = \begin{bmatrix} a_{11} + b_{11}i & a_{12} + b_{12}i \\ a_{21} + b_{21}i & a_{22} + b_{22}i \end{bmatrix}

이 경우 행렬식 \text{det}(\mathbf{A})는 다음과 같이 계산된다:

\text{det}(\mathbf{A}) = (a_{11} + b_{11}i)(a_{22} + b_{22}i) - (a_{12} + b_{12}i)(a_{21} + b_{21}i)

위 계산에서 복소수 곱셈을 적용하면 결과를 얻을 수 있다.

9. 복소수 행렬의 역행렬

복소수 행렬 \mathbf{A}의 역행렬 \mathbf{A}^{-1}은 행렬식을 사용하여 계산할 수 있다. 2x2 복소수 행렬 \mathbf{A}가 다음과 같이 주어졌을 때:

\mathbf{A} = \begin{bmatrix} a_{11} + b_{11}i & a_{12} + b_{12}i \\ a_{21} + b_{21}i & a_{22} + b_{22}i \end{bmatrix}

이 행렬의 역행렬은 다음과 같이 계산된다:

\mathbf{A}^{-1} = \frac{1}{\text{det}(\mathbf{A})} \cdot \begin{bmatrix} a_{22} + b_{22}i & -(a_{12} + b_{12}i) \\ -(a_{21} + b_{21}i) & a_{11} + b_{11}i \end{bmatrix}

여기서 \text{det}(\mathbf{A})는 앞서 계산된 행렬식이다. 각 원소는 복소수이므로, 이 표현을 계산할 때 복소수의 나눗셈 규칙을 적용해야 한다. 복소수의 나눗셈은 다음과 같이 이루어진다:

\frac{a + bi}{c + di} = \frac{(a + bi)(c - di)}{c^2 + d^2} = \frac{ac + bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2}i

따라서, 각 원소에 대해 위 규칙을 적용하여 계산한다.

10. 복소수 행렬의 고유값과 고유벡터

복소수 행렬의 고유값과 고유벡터는 실수 행렬의 경우와 유사하게 정의된다. 복소수 행렬 \mathbf{A}에 대해 다음 고유값 방정식을 풀어야 한다:

\mathbf{A} \mathbf{v} = \lambda \mathbf{v}

여기서 \mathbf{v}는 고유벡터이고, \lambda는 고유값이다. 고유값을 구하는 방법은 행렬의 특성 방정식 \det(\mathbf{A} - \lambda \mathbf{I}) = 0을 푸는 것과 같다. 특성 방정식에서 구해진 고유값들은 일반적으로 복소수일 수 있으며, 대응하는 고유벡터 역시 복소수로 표현된다.

2x2 복소수 행렬 \mathbf{A}의 특성 방정식은 다음과 같다:

\det(\mathbf{A} - \lambda \mathbf{I}) = \det \begin{bmatrix} a_{11} + b_{11}i - \lambda & a_{12} + b_{12}i \\ a_{21} + b_{21}i & a_{22} + b_{22}i - \lambda \end{bmatrix} = 0

이 방정식을 풀어 고유값 \lambda를 구하고, 각 고유값에 대응하는 고유벡터 \mathbf{v}는 다음을 만족하는 \mathbf{v}이다:

(\mathbf{A} - \lambda \mathbf{I}) \mathbf{v} = 0

여기서 고유값과 고유벡터는 복소수로 나올 수 있으므로, 이 계산을 통해 복소수 고유값과 고유벡터를 구하게 된다.