합성곱 정리
라플라스 변환에서 합성곱 정리는 두 함수의 라플라스 변환을 통해 두 함수의 곱을 시간 영역에서 구하는 방법을 제시한다. 이 정리는 주로 복잡한 시스템의 응답을 계산할 때 유용하며, 다음과 같은 형태로 표현된다.
먼저 두 함수 f(t)와 g(t)의 라플라스 변환을 각각 F(s)와 G(s)라 하겠다.
이때, 시간 영역에서의 합성곱은 다음과 같이 정의된다.
여기서 \tau는 더미 변수이다. 이 합성곱의 라플라스 변환은 다음과 같이 주어진다.
즉, 시간 영역에서의 두 함수의 합성곱은 주파수 영역에서의 곱으로 변환된다. 이는 라플라스 변환의 중요한 성질 중 하나이며, 시스템의 전달 함수나 신호 처리에서 매우 유용하게 사용된다.
역 라플라스 변환에서의 합성곱 정리
역 라플라스 변환을 이용하여 합성곱 정리를 적용할 때, F(s) \cdot G(s)의 형태로 주어진 라플라스 변환을 시간 영역으로 변환하려면, 해당 식의 역변환은 두 함수의 합성곱을 계산하는 방식으로 수행된다.
따라서, 두 함수의 라플라스 변환이 주어졌을 때, 그 곱을 역 라플라스 변환하여 시간 영역에서의 합성곱을 구할 수 있다.
예시
합성곱 정리를 역 라플라스 변환에서 사용하는 한 가지 구체적인 예를 들어보겠다.
F(s) = \frac{1}{s+1}, G(s) = \frac{1}{s+2}라고 가정하자. 이는 각각 f(t) = e^{-t}와 g(t) = e^{-2t}로 변환된다. 그러면 이 두 함수의 합성곱을 계산하면:
이 식을 계산하여 얻는 결과는 다음과 같다.
이제 앞서 언급한 예시를 계속하여 계산을 진행하겠다.
합성곱의 계산
두 함수 f(t) = e^{-t}와 g(t) = e^{-2t}의 합성곱을 구하는 과정을 자세히 풀어보면, 다음과 같이 계산된다.
우선, 지수 함수의 성질을 이용해 식을 정리하면:
여기서 e^{-t}는 상수이므로 적분 범위에서 제외할 수 있다. 따라서 적분식은 다음과 같이 단순화된다.
이제 적분을 계산해보면:
따라서 최종적으로 합성곱은 다음과 같다.
역 라플라스 변환의 적용
이제 F(s) = \frac{1}{s+1}와 G(s) = \frac{1}{s+2}의 곱을 주파수 영역에서 계산한 후, 그에 대한 역 라플라스 변환을 적용해보겠다.
이 표현은 부분 분수로 분해할 수 있다.
여기서 A와 B는 상수이며, 이를 구하기 위해 방정식을 풀면:
이를 s에 대한 식으로 정리하면:
따라서, s의 계수와 상수를 비교하여 A + B = 0, 2A + B = 1이라는 두 개의 방정식을 얻게 된다. 이를 풀면 A = 1, B = -1이 나온다. 그러므로:
이제 역 라플라스 변환을 적용하면:
이는 시간 영역에서 다음과 같이 표현된다.
따라서, 합성곱을 통한 역 라플라스 변환 결과는:
이 결과는 이전에 시간 영역에서 직접 합성곱을 계산한 결과와 일치한다.