동차 좌표계(homogeneous coordinate system)는 유클리드 좌표계의 확장을 통해 3D 그래픽 및 컴퓨터 시각화에서 중요한 역할을 한다. 이 좌표계는 변환, 특히 3D에서의 회전, 평행 이동, 스케일링 등을 보다 간단하고 일관되게 표현할 수 있게 해준다.
동차좌표 정의
기본적으로, 동차 좌표계에서는 (x, y, z)라는 유클리드 좌표를 (x, y, z, w)로 확장하는데, 여기서 w는 비축척(homogeneous) 좌표이다. 예를 들어, 2D 좌표 (x, y)는 다음과 같이 표현된다:
여기서,
비율과 동차좌표
동차 좌표계에서는 실제 좌표 값을 의미하는 w와의 비율이 중요한데, 이는 다음과 같은 동차식을 통해 나타낼 수 있다.
유클리드 좌표 (x, y)를 동차 좌표로 변환하려면,
위와 같이 표현된다. 여기서 비율은 다음과 같이 사용된다. 동차 좌표계에서,
이 경우, 실제 유클리드 좌표를 얻기 위해 w로 나눠야 하며,
따라서 동차 좌표 \mathbf{v}와 유클리드 좌표 \mathbf{u} 사이의 관계는 다음과 같다:
비율의 본질적 이해
동차 좌표에서 비율은 각 변환의 크기와 방향을 나타내는 중요한 지표가 된다. 이 비율을 통해 우리는 3D 공간에서 객체를 확장하고 축소할 수 있다.
동차 좌표의 변환
동차 좌표계에서 변환은 행렬 연산을 통해 쉽게 다룰 수 있다. 기본적인 변환은 회전, 평행 이동, 스케일 변환 등이 있으며 모두 일관된 방법으로 처리된다.
평행 이동 (Translation)
평행 이동은 객체를 어떤 방향으로 일정 거리만큼 이동시키는 변환이다. 동차 좌표에서는 다음과 같이 표현된다:
여기서 t_x, t_y, t_z는 각각 x, y, z 축으로의 이동 거리이다.
회전 (Rotation)
3D 공간에서의 회전은 각 축에 대한 회전을 따로 고려할 수 있다:
- X축에 대한 회전
- Y축에 대한 회전
- Z축에 대한 회전
스케일 변환 (Scaling)
객체의 크기를 변경하는 변환이다. 동차 좌표에서는 다음과 같이 표현된다:
여기서 s_x, s_y, s_z는 각각 x, y, z 축으로의 스케일 값이다.
동차 좌표 변환의 조합
동차 좌표계에서 여러 변환을 조합하여 하나의 변환 행렬을 만들 수 있다. 이것은 각 변환을 순서대로 곱셈하는 방식으로 이루어진다.
예를 들어, 먼저 평행 이동 후 회전을 수행하는 경우,
이렇게 행렬 곱셈을 통해 복합 변환을 구현할 수 있다.
동차 좌표계를 이해하고 활용하는 것은 3D 그래픽에서 객체 변환을 보다 효율적으로 수행하고, 일관된 방법으로 공간 좌표를 다룰 수 있게 해준다. 행렬 연산을 통해 다양한 변환을 조합하고 적용할 수 있으며, 이는 컴퓨터 그래픽, 로보틱스, 물리 시뮬레이션 등 많은 분야에서 기본적인 도구가 된다.